Ageing and healthcare expenditure: a macroeconomic analysis

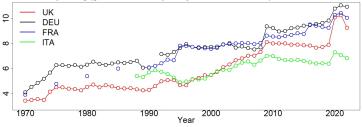
Luca Gerotto Luca Salmasi Gilberto Turati

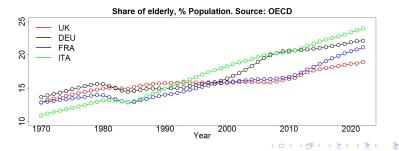
Department of Economics and Finance, Faculty of Economics Università Cattolica del Sacro Cuore

> Health Needs and Resources: Allocation and Measurement Issues Urbino, November 9-10th, 2023

> > (日) (四) (문) (문) (문)

Me: "How many elderly we have does not really determine spending"


Remuzzi (smiling): "What???"



Motivation

Healthcare spending (government+compulsory insurance schemes), % GDP. Source: OECD

- Clear upward trends for both healthcare spending (HCE) and the share of the elderly across Western countries
- As the elderly consume more services than the young, an easy argument brings to the conclusion that the share of elderly determines the spending

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Me: "Well, let me be more precise: if you observe an increase in the share of elderly of, say, 1%, from one year to the next does this really imply an increase of spending from one year to the next because of that?"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An extensive literature has highlighted several drivers of HCE. Some examples:

- Technological progress
- Organization (e.g., extension of coverage, ...)
- Baumol's cost disease
- Elasticity of per-capita HCE to per-capita income (rate of growth HCE higher than GDP growth)
- Demographics (e.g., age distribution, life expectancy)
- Political economy factors

In this paper, we focus on the role of the elderly as **end-users** and as **voters**, blending demographics and political economy issues

Elderly as end-users: theory

Literature mostly focused on elderly as end-users. Theoretically three possible effects of longer life expectancy on HCE:

- Compression of morbidity: lower number of years in bad health (Kramer, 1980) ⇒ decrease in per-capita HCE, ceteris paribus;
- Postponement of morbidity: same number of years in bad health (Payne et al, 2007) ⇒ (milder) decrease in per-capita HCE;
- Extension of morbidity: higher number of years in bad health (Olshansky et al., 1991) \implies increase in per-capita HCE.

Elderly as end-users: empirical evidence

Institutional background

Introduction

Empirical evidence on elderly as end-users is mixed:

Empirical strategy

• Positive correlation between share of elderly and per-capita HCE (*Crivelli et al., 2006; Di Matteo, 2005; Murthy and Okunade, 2016*);

Results

Elderly as voters

Conclusions

Appendix

- Zweifel et al. (1999): ageing of the population might be a red herring: for non-survivors, the driver is time-to-death, not age. Zweifel et al. (2004): yet, age affects HCE for survivors;
- Seshamani and Gray (2004) re-emphasize the role of ageing; positive, but moderate effect of ageing on HCE growth (*Breyer et al, 2010*); applying 'old' age-expenditure profiles to a 'new' longer life expectancy leads to an overstimation of future HCE (*Yang et al., 2003*)

We consider the share of elderly, the main causes of death and political variables as HCE determinants in a macro model, using aggregate regional data from the Italian Regional Healthcare Services

We consider all twenty Italian regions for the period 1997-2018 (22 years $\times 20$ regions).

Results useful for policy making \implies improve forecasting

Italian National Health Service (NHS)

Empirical strategy

Italian NHS in a nutshell:

Institutional background

Introduction

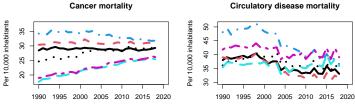
- Main characteristics: universal coverage and nondiscriminatory access to the health care services, tax financed by the State, regionally decentralized
- Central government is responsible for defining:
 - the minimum level of assistance that has to be provided in each Region

Results

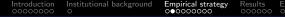
Elderly as voters

Conclusions


Appendix


- the level of funding, and the allocation to the different Regions
- Regions are responsible for organizing the local supply of healthcare services
- Regions that turn out to be *significantly* unable to either provide minimum services, or avoid budget deficits, undergo recovery plans (*Piani di Rientro*) imposed by the central government since 2007

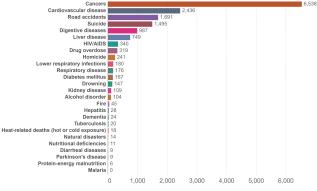
Empirical strategy


Institutional background

Time

Elderly as voters

Conclusions App 0 000


> Our World in Data

э

Causes of death

Causes of deaths for 15 to 49 year olds, Italy, 2017

Annual number of deaths - by cause - for people aged 15 to 49 years old.

OurWorldInData.org/causes-of-death • CC BY

(日)

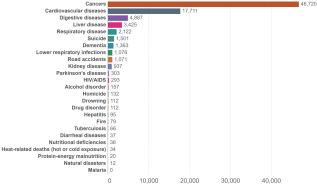
Source: IHME, Global Burden of Disease (GBD)

Figure: Causes of death in 15-49-year-olds (Source: Our World in Data)

Introduction 00000000 Institutional background O Empirical strategy

Results Elderly

Elderly as voters


Conclusions Appendix

Our World

Causes of death

Causes of deaths for 50 to 69 year olds, Italy, 2017

Annual number of deaths - by cause - for people between 50 and 69 years.

OurWorldInData.org/causes-of-death • CC BY

A D > A P > A D > A D >

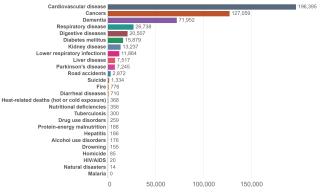
Source: IHME, Global Burden of Disease (GBD)

Figure: Causes of death in 50-69-year-olds (Source: Our World in Data)

Introduction 00000000 Institutional background

Empirical strategy

Results Elderly as


Elderly as voters

Conclusions Appendix

Causes of death

Causes of deaths for people who were 70 years and older, Italy, 2017 Annual number of deaths – by cause – for people who were 70 years and older.

Source: IHME, Global Burden of Disease (GBD)

OurWorldInData.org/causes-of-death • CC BY

A D > A P > A D > A D >

Figure: Causes of death in 70-year-olds and older ones (Source: Our World in Data)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Start with panel unit root testing
- Define appropriate model for data analysis

We performed the following panel unit root tests based on the estimation of augmented Dickey-Fuller (ADF) regressions for each time series with different assumptions concerning cross-sectional dependence:

 Cross-sectional independence: Levin, Lin and Chu (2002), Breitung t-stat (2000), Im, Pesaran and Shin (2003), the ADF
 Fisher Chi-Square and the PP - Fisher Chi-Square (Choi, 2001).

• Cross-sectional dependence: Pesaran CIPS (2007).

Panel unit root tests

Introduction

Institutional background

We consider the levels and first differences of:

Empirical strategy

- ln(*HCE*): log of real per-capita public current healthcare expenditure (pp)
- E^{65-85} : share of population with age between 65 and 85 years (pp)

Results

Elderly as voters

Conclusions

Appendix

- E^{85} : share of the population with more than 85 years. (pp)
- *M^{Cancer}*: cancer mortality rates per 10k inhabitants.
- *M^{Cardio}*: cardiocirculatory mortality rates per 10k inhabitants
- Beds: rate of hospital beds per 10k inhabitants
- In(GDP): log of real per-capita GDP. (pp)

We find that **the relevant time series are l(1)** and a Panel cointegration test suggests that **the variables are cointegrated**.

Empirical Strategy: First differences

Empirical strategy

00000000

Institutional background

Introduction

$$\Delta \ln(HCE_{i,t}) = \beta_0 + \beta_1 \Delta E_{i,t}^{65-85} + \beta_2 \Delta E_{i,t}^{85} + \beta_3 \Delta M_{i,t+2}^{Cancer} + \beta_4 \Delta M_{i,t+2}^{Cardio} + \beta_5 \Delta Beds_{i,t} + \beta_6 \Delta \ln(GDP_{i,t}) + \beta_7 TTE_{i,t} + \alpha_t + \epsilon_{i,t}$$

Results

Elderly as voters

Appendix

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

White diagonal robust standard errors. Clustered (region, period, two-way) s.e. yield more significant results.

Empirical Strategy: ECM

Institutional background

Introduction

Given that variables in levels are I(1) and cointegrated, we implement an error correction model (ECM) first estimating the long-run relation with variables in levels:

Empirical strategy

000000

$$\ln(HCE_{i,t}) = \beta_{0i} + \beta_{1i}t + \beta_2 E_{i,t}^{65-85} + \beta_3 E_{i,t}^{85+} + \beta_4 M_{i,t+2}^{Cancer}
+ \beta_5 M_{i,t+2}^{Cardio} + \beta_6 \ln(GDP_{i,t}) + \beta_7 Beds_{i,t} + u_{it} \quad (1)$$

Results

Appendix

and then implementing the error correction term (ECT) in the short run relation with first differenced variables:

$$\Delta \ln(HCE_{i,t}) = \gamma_0 + \gamma_1 \Delta E_{i,t}^{65-85} + \gamma_2 \Delta E_{i,t}^{85+} + \gamma_3 \Delta M_{i,t+2}^{Cardio} + \gamma_4 \Delta M_{i,t+2}^{Cancer} + \gamma_5 \Delta \ln(GDP_{i,t}) + \gamma_6 \Delta (Beds_{i,t}) + \gamma_7 TTE_t + \gamma_8 ECT_{i,t-1} + \alpha_t + \epsilon_{it}$$
(2)

where

$$ECT_{i,t} = \hat{u}_{i,t} = \ln(HCE_{i,t}) - \hat{\beta}_{0i} - \hat{\beta}_{1i}t - \hat{\beta}_2 E_{i,t}^{65-85} - \hat{\beta}_3 E_{i,t}^{65-85} - \hat{\beta}_4 M_{i,t+2}^{Cancer} - \hat{\beta}_5 M_{i,t+2}^{Cardio} - \hat{\beta}_6 \ln(GDP_{i,t}) - \hat{\beta}_7 Beds_{i,t}$$
(3)

Results Elde

derly as voters

sions Appendix

First difference model

Dependent variable: A		
Variable	Coef.	p-value
Constant	1.865***	0.000
ΔE_t^{65-85}	2.436**	0.034
ΔE_t^{85}	-0.515	0.888
ΔM_{t+2}^{Cardio}	-0.061	0.653
ΔM_{t+2}^{Cancer}	0.148	0.477
$\Delta HospBeds_t$	0.078	0.300
$\Delta log(RealGDP_t)$	-0.014	0.779
Time to regional election	-0.233*	0.083
Cross-sectional F.E.		
Period F.E.	\checkmark	
Sample (adjusted)	1997 2018	
Periods included:	22	
Cross-sections included:	20	
Total panel (balanced) observation	ons: 440	
Adjusted R^2	0.552	
F-test (p-value)	0.000	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Statistically significant covariates:

- Share of "Elderly" (E^{65-85}) (positive sign)
- Time to following regional election (negative sign)

"Very elderly": an increase in the share of individuals older than 85 years is **not** associated with a higher growth rate of healthcare expenditure.

Potential explanations:

- Relatively younger patients are treated more aggressively. This intuition is supported by data: for example, according to the Ministry of Health spending yearly report (*Monitoraggio della Spesa Sanitaria*), per-capita spending for outpatient services increases up to 77-78 years and then decreases
- Very elderly patients need long term care (LTC) treatments, the spending for which is not included into HCE.

Introduction Institutional background Empirical strategy Results of the second second

Dependent variable: <i>log</i>	$g(HCE_t)$	
Variable	Coef.	p-value
Variable	2.134***	0.006
E_{t}^{85}	0.467	0.737
M ^C ardio t+2	-1.397***	0.000
M ^C ancer	1.225***	0.002
Bedst	-0.439***	0.000
$log(GDP_t)$	0.828***	0.000
Cross-sectional F.E.	\checkmark	
Period F.E.		
Sample (adjusted)	1997 2018	
Periods included:	22	
Cross-sections included:	20	
Total panel (balanced) observations:	440	
Adjusted R ²	0.742	

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

- We also calculate the VIF to estimate the degree of multicollinearity among regressors in our model for the variables in levels.
- VIFs > 5 represent critical levels of multicollinearity where the coefficients are poorly estimated, and the p-values are questionable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• **Results** from this analysis reveal that VIFs are always < 5.

Introduction Institutional background Empirical strategy 0000000 Conclusions Appendix 00000000

Error correction model: short run

Dependent variable: Δ	$log(HCE_t)$	
Variable	Coef.	p-value
Constant	1.442***	0.001
ΔE_t^{65-85}	1.584	0.169
ΔE_t^{85}	0.991	0.790
ΔM_{t+2}^{Cardio}	-0.215*	0.096
ΔM_{t+2}^{Cancer}	0.202	0.289
$\Delta Beds_t$	-0.012	0.874
$\Delta log(GDP_t)$	0.076	0.284
TTEt	-0.211*	0.077
ECT_{t-1}	-0.213***	0.000
Cross-sectional F.E.		
Period F.E.	\checkmark	
Sample (adjusted)	1998 2018	
Periods included:	21	
Cross-sections included:	20	
Total panel (balanced) observations:	420	
Adjusted R^2	0.615	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- All selected variables, except the share of the very elderly, affect the long-run dynamics of healthcare expenditure (interesting differences in leads of mortality: + cancer, cardio; beds: negative coeff, occupancy rates? better rotation?)
- Short-run dynamics, instead, are affected by political economy variables (expenditure increases faster closer to regional elections) and by the deviation from the long-term value.
- Exception: mortality rate for cardiocirculatory diseases, which is (barely) significant.

- Consider data about regional elections in Italy from 2005 to 2019.
- We estimate the following regression model

 $Votes_{mpt} = \alpha_0 + \alpha_1 E_{mt}^{65-85} + \alpha_2 E_{mt}^{85} + \alpha_3 fisc_aut_{mt} + \iota_m + \omega_t + \epsilon_{mt}$

- Votes_{mpt} represents the share of votes obtained by candidates from coalition p (center-left, center-right, 5SM, other parties) in municipality m during year t.
- E_{mt}^{65-85} and E_{mt}^{85} are the same variables already described above at the municipality level
- We control for municipality (ι_m) and year ω_t of election FE and for an indicator of the level of fiscal autonomy

00

Elderly as voters

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Elderly as voters

	Cent	er-left	Cente	r-right	55	М	Other	parties
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
E^{65-85}	0.1523***		0.1152		-0.0135		-0.0248	
	(0.057)		(0.071)		(0.038)		(0.021)	
E ⁸⁵	0.1753		0.1473		-0.0850		-0.0932**	
	(0.134)		(0.161)		(0.077)		(0.041)	
E ⁶⁵		0.1538***		0.1162		-0.0218		-0.0294
		(0.056)		(0.070)		(0.037)		(0.021)
Fiscal autonomy	0.0000	0.0000	0.0004***	0.0004***	-0.0001*	-0.0001*	0.0000	0.0000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Constant	0.4141***	0.4142***	0.4108***	0.4110***	0.1266***	0.1257***	0.0224***	0.0222***
	(0.014)	(0.014)	(0.017)	(0.017)	(0.010)	(0.010)	(0.005)	(0.005)
Observations	21,339	21,339	21,332	21,332	12,815	12,815	18,645	18,645
R-squared	0.58	0.58	0.68	0.68	0.80	0.80	0.34	0.34
Municipalities	6,500	6,500	6,500	6,500	6,020	6,020	6,482	6,482
Mean of Y	0.357	0.357	0.416	0.416	0.108	0.108	0.0251	0.0251
SD of Y	0.164	0.164	0.191	0.191	0.0739	0.0739	0.0429	0.0429

Table: Share of elderly and votes to regional elections 2005-2019.

- Me: "Let me be even more precise:
 - the share of elderly matters in the long run
 - it matters the share of elderly, not of the very elderly
 - it matters in the short run for political reasons: they are many and they vote for center-left coalitions"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results
 000000

lerly as voters

nclusions Append

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Appendix •0000000000000

Panel unit root tests

Variable	Levin, Lin and Chu	Breitung t-stat	Im, Pesaran and Shin	ADF - Fisher	PP - Fisher
In(HCE)	0.02	1.00	1.00	1.00	1.00
$\Delta ln(HCE)$	0.00	0.00	0.00	0.00	0.00
E^{65-85}	0.31	0.05	0.01	0.00	1.00
ΔE^{65-85}	0.03	0.00	0.00	0.00	0.21
E^{85+}	1.00	0.02	1.00	1.00	1.00
ΔE^{85+}	0.00	0.00	0.00	0.00	0.82
M ^{Cancer}	0.00	0.00	0.00	0.00	0.00
ΔM^{Cancer}	0.00	0.00	0.00	0.00	0.00
M ^{Cardio}	0.00	0.64	0.39	0.06	0.00
ΔM^{Cardio}	0.00	0.00	0.00	0.00	0.00
Beds	0.00	1.00	0.00	0.00	0.00
$\Delta Beds$	0.00	0.00	0.00	0.00	0.00
In(GDP)	0.01	0.12	0.19	0.56	0.84
$\Delta ln(GDP)$	0.00	0.00	0.00	0.00	0.00

Table: Panel unit root tests - assuming cross-sectional independence

esults Elder

ly as voters C

Conclusions Ap

Panel unit root tests

Region	In(HCE)	$\Delta ln(HCE)$	E^{65-85}	ΔE^{65-85}	E ⁸⁵⁺	ΔE^{85+}
Abruzzo	≥ 0.10	< 0.01	≥ 0.1	≥ 0.1	< 0.05	≥ 0.1
Basilicata	≥ 0.10	< 0.01	≥ 0.1	≥ 0.1	< 0.10	≥ 0.1
Calabria	≥ 0.10	< 0.01	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1
Campania	< 0.01	< 0.01	≥ 0.1	< 0.10	< 0.10	< 0.01
Emilia-Romagna	< 0.10	< 0.05	< 0.05	< 0.10	< 0.05	< 0.10
Friuli Venezia Giulia	≥ 0.10	< 0.05	≥ 0.1	≥ 0.1	< 0.01	≥ 0.1
Lazio	< 0.10	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1
Liguria	≥ 0.10	≥ 0.1	≥ 0.1	< 0.05	≥ 0.1	< 0.01
Lombardia	≥ 0.10	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1
Marche	< 0.10	< 0.10	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1
Molise	< 0.05	< 0.01	≥ 0.1	≥ 0.1	≥ 0.1	< 0.05
Piemonte	< 0.01	< 0.01	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1
Puglia	≥ 0.10	< 0.05	≥ 0.1	≥ 0.1	≥ 0.1	< 0.01
Sardegna	≥ 0.10	< 0.05	< 0.05	≥ 0.1	≥ 0.1	< 0.05
Sicilia	≥ 0.10	≥ 0.1	< 0.10	≥ 0.1	< 0.05	< 0.10
Toscana	< 0.10	< 0.01	< 0.01	< 0.05	≥ 0.1	< 0.05
Trentino Alto Adige	≥ 0.10	0.05	< 0.05	≥ 0.1	≥ 0.1	≥ 0.1
Umbria	≥ 0.10	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1	≥ 0.1
Valle d'Aosta	< 0.10	< 0.01	≥ 0.1	< 0.10	≥ 0.1	≥ 0.1
Veneto	< 0.05	< 0.01	< 0.05	≥ 0.1	≥ 0.1	< 0.01

Table: Panel unit root tests - expenditure and ageing variables.

trategy Res

Elderly as vo

Conclusions 0

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Appendix ○○●○○○○○○○○○○

Panel unit root tests

Region	M ^{Cancer}	ΔM^{Cancer}	M ^{Cardio}	ΔM^{Cardio}
Abruzzo	≥ 0.10	< 0.01	≥ 0.10	≥ 0.10
Basilicata	≥ 0.10	< 0.01	≥ 0.10	< 0.01
Calabria	< 0.10	< 0.01	≥ 0.10	< 0.01
Campania	≥ 0.10	≥ 0.10	≥ 0.10	< 0.01
Emilia-Romagna	≥ 0.10	< 0.01	< 0.01	< 0.01
Friuli Venezia Giulia	< 0.10	< 0.01	< 0.05	≥ 0.10
Lazio	≥ 0.10	< 0.05	≥ 0.10	< 0.01
Liguria	≥ 0.10	< 0.01	≥ 0.10	< 0.01
Lombardia	≥ 0.10	< 0.01	≥ 0.10	< 0.01
Marche	< 0.05	< 0.01	< 0.10	< 0.05
Molise	< 0.05	< 0.05	≥ 0.10	< 0.01
Piemonte	≥ 0.10	< 0.01	≥ 0.10	< 0.10
Puglia	< 0.05	< 0.05	< 0.01	< 0.05
Sardegna	≥ 0.10	< 0.01	≥ 0.10	< 0.01
Sicilia	≥ 0.10	< 0.01	≥ 0.10	< 0.01
Toscana	< 0.05	< 0.01	≥ 0.10	< 0.01
Trentino Alto Adige	< 0.01	< 0.01	< 0.05	< 0.01
Umbria	< 0.05	< 0.10	< 0.05	< 0.01
Valle d'Aosta	< 0.05	< 0.01	≥ 0.10	< 0.01
Veneto	≥ 0.10	< 0.01	≥ 0.10	< 0.01

Table: Panel unit root tests - mortality rates 2.

y Results 000000 erly as voters

Conclusions A 0 C

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Appendix 000●0000000000

Panel unit root tests

Region	Beds	$\Delta Beds$	In(GDP)	$\Delta ln(GDP)$
Abruzzo	≥ 0.10	< 0.10	< 0.10	< 0.05
Basilicata	≥ 0.10	≥ 0.10	≥ 0.10	< 0.01
Calabria	≥ 0.10	< 0.01	≥ 0.10	< 0.05
Campania	≥ 0.10	< 0.01	< 0.10	< 0.05
Emilia-Romagna	≥ 0.10	< 0.01	≥ 0.10	< 0.05
Friuli Venezia Giulia	< 0.10	≥ 0.10	≥ 0.10	< 0.05
Lazio	≥ 0.10	< 0.01	< 0.10	< 0.01
Liguria	≥ 0.10	≥ 0.10	< 0.05	≥ 0.10
Lombardia	≥ 0.10	≥ 0.10	< 0.01	< 0.01
Marche	≥ 0.10	< 0.10	< 0.05	< 0.05
Molise	≥ 0.10	≥ 0.10	\geq 0.10	< 0.05
Piemonte	< 0.05	≥ 0.10	≥ 0.10	< 0.01
Puglia	≥ 0.10	< 0.01	< 0.10	≥ 0.10
Sardegna	≥ 0.10	< 0.05	\geq 0.10	< 0.01
Sicilia	≥ 0.10	≥ 0.10	≥ 0.10	< 0.10
Toscana	≥ 0.10	< 0.01	< 0.01	≥ 0.10
Trentino Alto Adige	≥ 0.10	≥ 0.10	< 0.10	< 0.01
Umbria	≥ 0.10	< 0.01	< 0.10	≥ 0.10
Valle d'Aosta	≥ 0.10	< 0.01	\geq 0.10	< 0.01
Veneto	≥ 0.10	< 0.01	≥ 0.10	< 0.01

Table: Panel unit root tests - GDP and hospital beds.

・ロト ・四ト ・ヨト ・ヨト

æ

Variable	Variance	VIF
E_t^{65-85}	0.596	4.147
E_t^{85+}	1.928	3.812
M_{t+2}^{Cardio}	0.052	2.245
M_{t+2}^{Cancer}	0.151	2.403
Bedst	0.011	3.590
$ln(GDP)_t$	0.010	1.627

Panel cointegration test

Test	Statistic	Prob.	Weighted Statistic	Prob.
Panel v-Statistic	-5.25	1.00	-6.66	1.00
Panel rho-Statistic	0.86	0.80	1.28	0.90
Panel PP-Statistic	-32.54	0.00	-33.50	0.00
Panel ADF-Statistic	-17.36	0.00	-14.44	0.00

Table: Pedroni Residual Cointegration Test. Alternative hypothesis: common AR coefs. (within-dimension)

Test	Statistic	Prob.
Group rho-Statistic	2.52	0.99
Group PP-Statistic	-57.85	0.00
Group ADF-Statistic	-18.03	0.00

Table: Pedroni Residual Cointegration Test. Alternative hypothesis: individual AR coefs. (between-dimension)

Null Hypothesis: No cointegration. Trend assumption: Deterministic intercept and trend. Automatic lag length selection based on SIC with a max lag of 2. Newey-West automatic bandwidth selection and Bartlett kernel.

・ロト ・四ト ・ヨト ・ヨト

ж

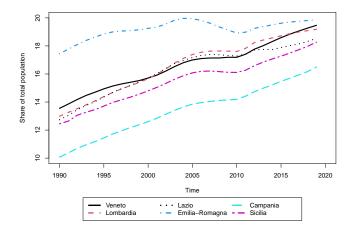


Figure: Percentage of the population between 65 and 85 years old, selected regions

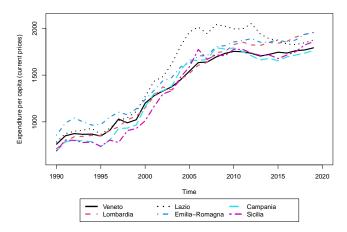


Figure: Healthcare public expenditure per capita at current prices, selected regions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Results

Elderly as voters

Conclusions

A D > A P > A D > A D >

э

Appendix

Empirical strategy

Institutional background

Introduction

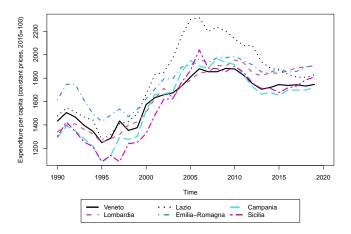
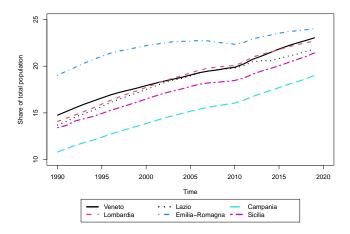



Figure: Healthcare public expenditure per capita at constant prices (2015=100), selected regions

Explanatory variable: share of elderly

Institutional background

Introduction

Results

Appendix

A D > A P > A D > A D >

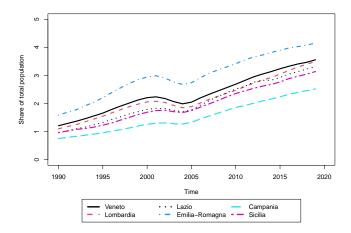

э

Figure: Percentage of the population older than 65 years, selected regions

Explanatory variable: share of elderly

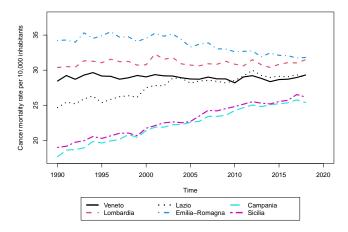
Institutional background

Introduction

Appendix

(日)

э


Figure: Percentage of the population older than 85 years, selected regions

Explanatory variable: mortality rate (cancer)

Empirical strategy

Institutional background

Introduction

Results

Elderly as voters

(日)

Figure: Cancer: mortality rate per 10,000 inhabitants, selected regions

Appendix 0000000000000000

э

Explanatory variable: mortality rate (circulatory diseases)

Results

Elderly as voters

Empirical strategy

Appendix

(日)

э

Institutional background

Introduction

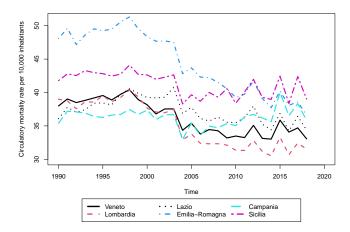
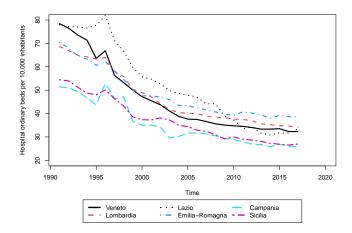



Figure: Circulatory diseases: mortality rate per 10,000 inhabitants, selected regions

Explanatory variable: hospital beds

Institutional background

Introduction

Results

Figure: Rate of ordinary hospital beds per 10,000 inhabitants, selected regions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

Appendix