The role of information and competition in hospital performance

Paola Bertoli, Emanuele Bracco, Jose Escarce, Paolo Pertile

Verona, Verona, UCLA, Verona

Urbino — 10 novembre 2023

VR,VR,UCLA,VR 1/34

• Availability of data on health outcomes and providers has been increasing dramatically

VR,VR,UCLA,VR

- Availability of data on health outcomes and providers has been increasing dramatically
- Effect of these programme on outcomes is not very studied

VR,VR,UCLA,VR

2/34

- Availability of data on health outcomes and providers has been increasing dramatically
- Effect of these programme on outcomes is not very studied
- Many healthcare systems allow patient choice ⇒ some sort of competition for patients

- Availability of data on health outcomes and providers has been increasing dramatically
- Effect of these programme on outcomes is not very studied
- Many healthcare systems allow patient choice ⇒ some sort of competition for patients
- Choice is unevenly distributed across localities.

2/34

- Availability of data on health outcomes and providers has been increasing dramatically
- Effect of these programme on outcomes is not very studied
- Many healthcare systems allow patient choice ⇒ some sort of competition for patients
- Choice is unevenly distributed across localities.
- We study the interplay of

- Availability of data on health outcomes and providers has been increasing dramatically
- Effect of these programme on outcomes is not very studied
- Many healthcare systems allow patient choice ⇒ some sort of competition for patients
- Choice is unevenly distributed across localities.
- We study the interplay of
 - **1** collecting and making performance indices available to the public

- Availability of data on health outcomes and providers has been increasing dramatically
- Effect of these programme on outcomes is not very studied
- Many healthcare systems allow patient choice ⇒ some sort of competition for patients
- Choice is unevenly distributed across localities.
- We study the interplay of
 - 1 collecting and making performance indices available to the public
 - 2 competition among hospitals

Literature Review

 Information matters (Berwick 2003; Smith 2009; Campanella 2016) and affects performance through regulation, professionalism, market forces (Devers et al 2014)

VR,VR,UCLA,VR 3/34

Literature Review

- Information matters (Berwick 2003; Smith 2009; Campanella 2016) and affects performance through regulation, professionalism, market forces (Devers et al 2014)
- Publicizing performance indicators affects patient choice (Greenalgh et al. 2018), may push providers to improve quality to preserve reputation (Hibbard et al 2005)

Literature Review

- Information matters (Berwick 2003; Smith 2009; Campanella 2016) and affects performance through regulation, professionalism, market forces (Devers et al 2014)
- Publicizing performance indicators affects patient choice (Greenalgh et al. 2018), may push providers to improve quality to preserve reputation (Hibbard et al 2005)
- Does it really improve outcomes? Evidence on this is mixed: no effect (Clough et al. 2002; Ghali et al. 1997; Chen and Meinecke 2012), quality improvements (O'Connor et al., 1996; Baker et al., 2001; Dranove et al., 2003; Hibbard et al., 2003; Hibbard et al., 2005, WeigeretASH al., 2009; Lu, 2012; Deore et al., 2023).

Funded by the European Union Programme to collect hospital data on a number of procedures, clinical outcomes

VR,VR,UCLA,VR 4/34

- Programme to collect hospital data on a number of procedures, clinical outcomes
- Aims to evaluate hospitals, hospital management, improve hospital quality, decrease innappropriateness

VR,VR,UCLA,VR 4/34

- Programme to collect hospital data on a number of procedures, clinical outcomes
- Aims to evaluate hospitals, hospital management, improve hospital quality, decrease innappropriateness
- Based on discharge records (SDO), together with other sources (vital records, etc)

4/34

- Programme to collect hospital data on a number of procedures, clinical outcomes
- Aims to evaluate hospitals, hospital management, improve hospital quality, decrease innappropriateness
- Based on discharge records (SDO), together with other sources (vital records, etc)
- Started with 47 indicators, now almost 200 (volumes, process, morbidity/outcome)

 Managed/coordinated by AGENAS ("advisory" agency of National+Regional Health ministries)

VR,VR,UCLA,VR

- Managed/coordinated by AGENAS ("advisory" agency of National+Regional Health ministries)
- First edition in 2010 (data from 2008), but early pilot schemes for cardiovascular outcomes started in 2004 ("Mattoni" project)

VR,VR,UCLA,VR

- Managed/coordinated by AGENAS ("advisory" agency of National+Regional Health ministries)
- First edition in 2010 (data from 2008), but early pilot schemes for cardiovascular outcomes started in 2004 ("Mattoni" project)
- From 2012 AGENAS creates website accessible through registration/password only by professionals

- Managed/coordinated by AGENAS ("advisory" agency of National+Regional Health ministries)
- First edition in 2010 (data from 2008), but early pilot schemes for cardiovascular outcomes started in 2004 ("Mattoni" project)
- From 2012 AGENAS creates website accessible through registration/password only by professionals
- In 2016 made openly accessible to everyone

• Socialized healthcare system, managed by both central and regional governments.

VR,VR,UCLA,VR 6/34

- Socialized healthcare system, managed by both central and regional governments.
- Central government decides the services that must be included in regional provision (LEA – "Essential Levels of Service"), allocates funding to Regions, controls on delivery of service and budgets.

VR,VR,UCLA,VR 6/34

- Socialized healthcare system, managed by both central and regional governments.
- Central government decides the services that must be included in regional provision (LEA – "Essential Levels of Service"), allocates funding to Regions, controls on delivery of service and budgets.
- Regional governments organize healthcare systems within the national regulations, they may top-up expenditure

- Socialized healthcare system, managed by both central and regional governments.
- Central government decides the services that must be included in regional provision (LEA – "Essential Levels of Service"), allocates funding to Regions, controls on delivery of service and budgets.
- Regional governments organize healthcare systems within the national regulations, they may top-up expenditure
- Primary and Inpatient care are free at the point of consumption, small co-payments for outpatient care, lab/diagnostic tests.

 Regions typically subdivided in local Trusts known under different acronyms (ASL/AUSL/ATS).

VR,VR,UCLA,VR

- Regions typically subdivided in local Trusts known under different acronyms (ASL/AUSL/ATS).
- Hospitals may be public (directly managed by local Trust or autonomous) or private-accredited. University/Research (IRCCS) hospitals have special provisions.

VR,VR,UCLA,VR

- Regions typically subdivided in local Trusts known under different acronyms (ASL/AUSL/ATS).
- Hospitals may be public (directly managed by local Trust or autonomous) or private-accredited. University/Research (IRCCS) hospitals have special provisions.
- Hospitals not run directly by Trusts are reimbursed typically through DRG on national tariffs; Regions may amend these tariffs (but not the classification).

- Regions typically subdivided in local Trusts known under different acronyms (ASL/AUSL/ATS).
- Hospitals may be public (directly managed by local Trust or autonomous) or private-accredited. University/Research (IRCCS) hospitals have special provisions.
- Hospitals not run directly by Trusts are reimbursed typically through DRG on national tariffs; Regions may amend these tariffs (but not the classification).
- Different regions have different structures and reliance on private-accredited hospital/clinics.

• GPs prescribes referral to specialists, lab or diagnostic tests.

VR,VR,UCLA,VR

- GPs prescribes referral to specialists, lab or diagnostic tests.
- Patients then book the visit in the hospital they prefer (with some hurdles if visit is outside the region of residence). This may feed into being scheduled for surgery/inpatient treatment in that hospital.

- GPs prescribes referral to specialists, lab or diagnostic tests.
- Patients then book the visit in the hospital they prefer (with some hurdles if visit is outside the region of residence). This may feed into being scheduled for surgery/inpatient treatment in that hospital.
- In case of emergency, an ambulance carries the patient to the closest hospital available for her condition, according to the indication of the regional Emergency and Urgent Care Agency.

■ Treatment 1: in 2012 PNE is fully implemented ⇒ Indicator effect

VR,VR,UCLA,VR 9/34

- Treatment 1: in 2012 PNE is fully implemented ⇒ Indicator effect
- Treatment 2: in 2016 PNE data is released to the public \Rightarrow Information effect

- Treatment 1: in 2012 PNE is fully implemented ⇒ Indicator effect
- Treatment 2: in 2016 PNE data is released to the public \Rightarrow Information effect
- How do the treatments interact with competition?

• Some patient may have different choice of hospital than others

VR,VR,UCLA,VR 10/34

Hospital information, Competition, Performance

BBEP

- Some patient may have different choice of hospital than others
- A patient in Rome, Milan or Naples can choose among over 50 hospitals doing femur fracture surgery within 20km

- Some patient may have different choice of hospital than others
- A patient in Rome, Milan or Naples can choose among over 50 hospitals doing femur fracture surgery within 20km
- A patient in Sanremo, Crotone, Oristano has the choice of only one hospital within 20km

- Some patient may have different choice of hospital than others
- A patient in Rome, Milan or Naples can choose among over 50 hospitals doing femur fracture surgery within 20km
- A patient in Sanremo, Crotone, Oristano has the choice of only one hospital within 20km
- Does this shape incentives, behaviors, outcomes?

BBEP

■ Hospital level outcomes for over 1,000 hospitals, 2008-2020

VR,VR,UCLA,VR 11/34

- Hospital level outcomes for over 1,000 hospitals, 2008-2020
- Dummies for rural hospitals, type of hospital (self-governing, Private-Accredited, Research/Uni)

- Hospital level outcomes for over 1,000 hospitals, 2008-2020
- Dummies for rural hospitals, type of hospital (self-governing, Private-Accredited, Research/Uni)
- ASL/Municipality level data (% elderly, average taxable income)

- Hospital level outcomes for over 1,000 hospitals, 2008-2020
- Dummies for rural hospitals, type of hospital (self-governing, Private-Accredited, Research/Uni)
- ASL/Municipality level data (% elderly, average taxable income)
- Dummies for regions under "debt recovery plan" (piani di rientro)

VR,VR,UCLA,VR 12/34

• NHw: # of hospitals reachable by representative resident in "catchment area"

- NHw: # of hospitals reachable by representative resident in "catchment area"
- NH: # of hospitals in "catchment area" of the hospital

- NHw: # of hospitals reachable by representative resident in "catchment area"
- NH: # of hospitals in "catchment area" of the hospital
- ShPop: share of population in "catchment area" who could choose between more than one hospital

- NHw: # of hospitals reachable by representative resident in "catchment area"
- NH: # of hospitals in "catchment area" of the hospital
- ShPop: share of population in "catchment area" who could choose between more than one hospital
- HHI: HH index based on number of procedures by hospitals within "catchment area" (inverted scale)

- NHw: # of hospitals reachable by representative resident in "catchment area"
- NH: # of hospitals in "catchment area" of the hospital
- ShPop: share of population in "catchment area" who could choose between more than one hospital
- HHI: HH index based on number of procedures by hospitals within "catchment area" (inverted scale)
- HHI2: HH index based on population (inverted scale) FLASH

the European Union

20/30km crow's flight

VR,VR,UCLA,VR 13/34

- **20**/30km crow's flight
- **3**0min drive

VR,VR,UCLA,VR

- **20**/30km crow's flight
- **3**0min drive
- 20km drive

VR,VR,UCLA,VR

- **20**/30km crow's flight
- **3**0min drive
- 20km drive
- Competition dummy: competition index larger than pre-treatment median

- **20**/30km crow's flight
- **3**0min drive
- 20km drive
- Competition dummy: competition index larger than pre-treatment median
- Competition index quartile (based on pre-treatment values)

$$y_{it} = \alpha + \beta T_{it} + \gamma C_{it} + \delta T_{it}C_{it} + \lambda X_{it} + t A_i + H_i + \epsilon_{it}$$

BBEP Hospital information, Competition, Performance

R,VR,UCLA,VR 14 / 34

■ T1=Indicator, T2=Information; 2008-2015 for T1, 2012-2020 for T2

 $y_{it} = \alpha + \beta T_{it} + \gamma C_{it} + \delta T_{it} C_{it} + \lambda X_{it} + t A_i + H_i + \epsilon_{it}$

VR,VR,UCLA,VR 14/34

■ T1=Indicator, T2=Information; 2008-2015 for T1, 2012-2020 for T2

 $y_{it} = \alpha + \beta T_{it} + \gamma C_{it} + \delta T_{it}C_{it} + \lambda X_{it} + t A_i + H_i + \epsilon_{it}$

• Treatment dummy T,

■ T1=Indicator, T2=Information; 2008-2015 for T1, 2012-2020 for T2

 $y_{it} = \alpha + \beta T_{it} + \gamma C_{it} + \delta T_{it}C_{it} + \lambda X_{it} + t A_i + H_i + \epsilon_{it}$

- Treatment dummy T,
- Competition variable: median dummy, Quartile (discrete), Quartile (three dummies)

■ T1=Indicator, T2=Information; 2008-2015 for T1, 2012-2020 for T2

 $y_{it} = \alpha + \beta T_{it} + \gamma C_{it} + \delta T_{it}C_{it} + \lambda X_{it} + t A_i + H_i + \epsilon_{it}$

- Treatment dummy T,
- Competition variable: median dummy, Quartile (discrete), Quartile (three dummies)
- Controls: rural, Self-gov, Priv, Research/Uni Hospital, % elderly, debt-recovery

■ T1=Indicator, T2=Information; 2008-2015 for T1, 2012-2020 for T2

 $y_{it} = \alpha + \beta T_{it} + \gamma C_{it} + \delta T_{it}C_{it} + \lambda X_{it} + t A_i + H_i + \epsilon_{it}$

- Treatment dummy T,
- Competition variable: median dummy, Quartile (discrete), Quartile (three dummies)
- Controls: rural, Self-gov, Priv, Research/Uni Hospital, % elderly, debt-recovery
- Area (N-W, N-E, C, S, Island) trends ; OLS/H fixed effects

Funded by the European Union

Empirical Strategy

Two treatments, toghether (T1=Indicator, T2=Information, 2008-2020)

$$y_{it} = \alpha + \beta_1 T \mathbf{1}_{it} + \beta_2 T \mathbf{2}_{it} + \gamma C_{it} + \delta_1 T \mathbf{1}_{it} C_{it} + \delta_2 T \mathbf{2}_{it} C_{it} + \lambda X_{it} + t \ A_i + H_i + \epsilon_{it}$$

VR,VR,UCLA,VR 15 / 34

Empirical Strategy

Two treatments, toghether (T1=Indicator, T2=Information, 2008-2020)

$$y_{it} = \alpha + \beta_1 T \mathbf{1}_{it} + \beta_2 T \mathbf{2}_{it} + \gamma C_{it} + \delta_1 T \mathbf{1}_{it} C_{it} + \delta_2 T \mathbf{2}_{it} C_{it} + \lambda X_{it} + t \ A_i + H_i + \epsilon_{it}$$

• Treatment dummy T,

Two treatments, toghether (T1=Indicator, T2=Information, 2008-2020)

$$y_{it} = \alpha + \beta_1 T \mathbf{1}_{it} + \beta_2 T \mathbf{2}_{it} + \gamma C_{it} + \delta_1 T \mathbf{1}_{it} C_{it} + \delta_2 T \mathbf{2}_{it} C_{it} + \lambda X_{it} + t \ A_i + H_i + \epsilon_{it}$$

- Treatment dummy T,
- Competition variable: median dummy, Quartile (discrete), Quartile (three dummies)

Two treatments, toghether (T1=Indicator, T2=Information, 2008-2020)

$$y_{it} = \alpha + \beta_1 T \mathbf{1}_{it} + \beta_2 T \mathbf{2}_{it} + \gamma C_{it} + \delta_1 T \mathbf{1}_{it} C_{it} + \delta_2 T \mathbf{2}_{it} C_{it} + \lambda X_{it} + t \ A_i + H_i + \epsilon_{it}$$

- Treatment dummy T,
- Competition variable: median dummy, Quartile (discrete), Quartile (three dummies)
- Controls: rural, Self-gov, Priv, Research/Uni Hospital, % elderly, debt-recovery

Two treatments, toghether (T1=Indicator, T2=Information, 2008-2020)

$$y_{it} = \alpha + \beta_1 T \mathbf{1}_{it} + \beta_2 T \mathbf{2}_{it} + \gamma C_{it} + \delta_1 T \mathbf{1}_{it} C_{it} + \delta_2 T \mathbf{2}_{it} C_{it} + \lambda X_{it} + t \ A_i + H_i + \epsilon_{it}$$

- Treatment dummy T,
- Competition variable: median dummy, Quartile (discrete), Quartile (three dummies)
- Controls: rural, Self-gov, Priv, Research/Uni Hospital, % elderly, debt-recovery
- Area (N-W, N-E, C, S, Island) trends ; OLS/H fix Weffetees

Funded by the European Union

BBEP

• We focus on one process indicator

VR,VR,UCLA,VR 16/34

• We focus on one process indicator

• Femur fracture: share of surgery within two days

BBEP Hospital information, Competition, Performance VR,VR,UCLA,VR 16 / 34 • We focus on one process indicator

- Femur fracture: share of surgery within two days
- But also look at other indicators

• We focus on one process indicator

- Femur fracture: share of surgery within two days
- But also look at other indicators
 - Femur fracture: 30d mortality

BBEP Hospital information, Competition, <u>Performance</u>

A look at the data

Funded by the European Union

VR,VR,UCLA,VR 17/34

Femur fracture % surgery within 2 days. 2008 vs 2019

VR,VR,UCLA,VR 18/34

Hospital information, Competition, Performance

BBEP

Femur fracture

% mortality within 30 days of surgery. 2008 vs 2019

Funded by the European Union

VR,VR,UCLA,VR 19/34

Hospital information, Competition, Performance

BBEP

Competition Quartiles

BBEP Hospital information, Competition, Performance

20/34

Tabella 1: Summary statistics

Variable	Mean	Std. Dev.	N
Femur fracture — Surgery within 2 days	48.932	25.141	5713
Femur fracture — Surgery 30-day mortality	6.134	3.593	5692
Competition (median dummy, NHw 20km)	0.485	0.5	5005
Competition (quartile, NHw 20km)	2.729	0.832	7608
Private hospital dummy	0.416	0.493	16138
Self-governing hospital	0.139	0.346	16138
Research/University hospital	0.08	0.271	16138
% elderly	0.217	0.029	16131
rural	0.212	0.409	16138
debt-recovery plan	0.362	0.481	16138

Hospital information, Competition, Performance

BBEP
Competition and Process Efficiency: T1 Indicator effect Femur fracture — Surgery within 2 days (hospital fixed effects, area trends)

	b/se	b/se	b/se	b/se
Treatment1	2.821^{**}	1.740	-1.582	1.064
	(1.08)	(1.23)	(1.98)	(1.63)
T1 x Competition (median)		3.580^{*}		
		(1.60)		
T1 x Competition (Quartiles)			2.067^{**}	
,			(0.71)	
T1 x Competition (2nd Quartile)			· /	1.151
- 、 -				(2.15)
T1 x Competition (3rd Quartile)				2.038
				(2.16)
T1 x Competition (4th Quartile)				6.773**
				(2.21)
Debt-recovery	8.423^{***}	8.794^{***}	8.803***	8.876***
5	(1.76)	(1.80)	(1.79)	(1.81).
Observations	3589	3552	3547	₩ ₃₅₄₇ ASI
R^2	0.373	0.389	0.385	0.386
	0.010	0.000	0.000	Funded by

the European Union

Competition and Process Efficiency: T2 Information effect

Femur fracture — Surgery within 2 days (hospital fixed effects, area trends)

	(1)	(2)	(3)	(4)
	b/se	b/se	b/se	b/se
Treatment2	4.368^{***}	2.459^{*}	-2.828	-0.767
	(0.82)	(0.98)	(1.77)	(1.52)
T2 x Competition (median)		5.192^{***}		
		(1.47)		
T2 x Competition (Quartiles)			2.924^{***}	
			(0.65)	
T2 x Competition (2nd Quartile)				4.882^{*}
				(1.97)
T2 x Competition (3rd Quartile)				6.478^{**}
				(2.32)
T2 x Competition (4th Quartile)				9.329^{***}
				(2.02)
Debt recovery plan	2.475	1.087	1.545	1.948
	(2.63)	(2.56)	(2.61)	(2.75)
Observations	4126	4093	4106	4106
R^2	0.321	0.334	0.332	

VR,VR,UCLA,VR 23/34

Event study: T1 x Competition

Femur surgery within 2 days

VR,VR,UCLA,VR

24/34

Event study: T1 x Competition

30d mortality after femur fracture

Event study: T2 x Competition

Femur surgery within 2 days

Hospital information, Competition, Performance

VR,VR,UCLA,VR 26 / 34

Event study: T2 x Competition

30d mortality after femur fracture

VR,VR,UCLA,VR

27/34

BBEP

Robustness: different competition indices (20km distance)

Femur Fracture - Surgery within 2 days

Hospital information, Competition, Performance

VR,VR,UCLA,VR 28/34

Robustness: different distances (NHw index)

BEP

Hospital information, Competition, Performance

VR,VR,UCLA,VR 29/34

Rural (left) and Competition Quartile (right)

VR,VR,UCLA,VR 30 / 34

Heterogeneity Analysis: Rural Hospitals

Hospital fixed effects, macroarea trends, controls

	Rural		Non-Rural	
	(1)	(2)	(3)	(4)
Treatment2	4.054^{**}	4.871^{**}	4.921^{***}	2.349
	(1.51)	(1.78)	(0.97)	(1.24)
Treatment2 x Competition		-4.156		5.642^{***}
		(4.76)		(1.58)
Observations	962	958	3100	3072
R^2	0.276	0.286	0.356	0.371

VR,VR,UCLA,VR 31 / 34

Hospital information, Competition, Performance

BBEP

Heterogeneity Analysis: North vs Centre-South

Hospital fixed effects, macroarea trends, controls

	North		Centre+South	
	(1)	(2)	(3)	(4)
	b/se	b/se	b/se	b/se
T2	4.265^{***}	-0.278	4.540^{***}	4.365^{**}
	(1.20)	(1.54)	(1.14)	(1.31)
T2*Competition		9.003***		0.928
		(1.85)		(2.12)
Observations	1830	1820	2232	2210
R^2	0.316	0.349	0.340	0.346

VR,VR,UCLA,VR 32/34

Heterogeneity Analysis: Social Capital

Hospital fixed effects, macroarea trends, controls

	Low SK		High SK	
	(1)	(2)	(3)	(4)
	b/se	b/se	b/se	b/se
T2	4.590^{***}	3.996^{**}	4.742^{***}	2.223
	(1.21)	(1.52)	(1.12)	(1.40)
T2*Competition		1.563		6.333^{***}
		(2.53)		(1.67)
Observations	1813	1799	2240	2222
R^2	0.339	0.349	0.332	0.349

VR,VR,UCLA,VR 33 / 34

Hospital information, Competition, Performance

BBEP

• Little evidence of an effect of recording indicators (but smooth introduction of indicators may confound our results)

VR,VR,UCLA,VR 34/34

- Little evidence of an effect of recording indicators (but smooth introduction of indicators may confound our results)
- Strong evidence that **publishing** indicators improves quality (as measured by process efficiency), but only in competitive environment

- Little evidence of an effect of recording indicators (but smooth introduction of indicators may confound our results)
- Strong evidence that **publishing** indicators improves quality (as measured by process efficiency), but only in competitive environment
- Heterogeneity analysis points towards non-rural, Northern, high social capital localities to be the driver of results.

- Little evidence of an effect of recording indicators (but smooth introduction of indicators may confound our results)
- Strong evidence that **publishing** indicators improves quality (as measured by process efficiency), but only in competitive environment
- Heterogeneity analysis points towards non-rural, Northern, high social capital localities to be the driver of results.
- Results are robust to a number of different competition indices and catchment areas

- Little evidence of an effect of recording indicators (but smooth introduction of indicators may confound our results)
- Strong evidence that **publishing** indicators improves quality (as measured by process efficiency), but only in competitive environment
- Heterogeneity analysis points towards non-rural, Northern, high social capital localities to be the driver of results.
- Results are robust to a number of different competition indices and catchment areas
- Little evidence on mortality

- Little evidence of an effect of recording indicators (but smooth introduction of indicators may confound our results)
- Strong evidence that **publishing** indicators improves quality (as measured by process efficiency), but only in competitive environment
- Heterogeneity analysis points towards non-rural, Northern, high social capital localities to be the driver of results.
- Results are robust to a number of different competition indices and catchment areas
- Little evidence on mortality
- Next: analysis on other clinical outcomes

